Math in Quarto

Binomial Formula

_{f }

We define the binomial distribution as:

\[\begin{equation} f\left(k\right) = \binom{n}{k} p^k\left(1-p\right)^{n-k} \label{eq:binom} \end{equation}\]

As shown in Equation @ref(eq:binom), the binomial function defines the probability…

Binomial Formula

We define the binomial distribution as:(Equation 1)

\[ f(k) = \binom{n}{k} p^k (1-p)^{n-k} \tag{1}\]

As shown in Equation @ref(eq:binom), the binomial function defines the probability…

Black-Scholes (Equation 2) is a mathematical model that seeks to explain the behavior of financial derivatives, most commonly options:

\[ \frac{\partial \mathrm C}{ \partial \mathrm t } + \frac{1}{2}\sigma^{2} \mathrm S^{2} \frac{\partial^{2} \mathrm C}{\partial \mathrm S^2} + \mathrm r \mathrm S \frac{\partial \mathrm C}{\partial \mathrm S}\ = \mathrm r \mathrm C \tag{2}\]