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Why Phase Identification Needs a New Approach ?

Problem: Utilities don’t know which phase

. ‘Small Labelled dataset ~ Semi Supervised Leaming
customers are connected to — this affects N
voltage regulation, DER integration, and fault e —
localization. b
i e aerctl)
Challenge: Ground truth phase data B S
is scarce, unreliable, and costly to collect. .k

* Supervised learning ML methods need /

lots of labeled data — often unavailable | — |

or unreliable. s
Motivation: How do we scale phase
identification without needing tons of labeled Fig. 1: llustration of semi-supervised techniques
data?
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What is Semi-Supervised Learning (SSL)N —

SSL uses a small amount of labeled data + a large pool of unlabeled data to train better models.
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What We Did: Hybrid SSL + BNN SSL Framework
Framework

* Inreal-world grid data, most phase
labels are missing.
*  SSL learns from the small labeled

Self-training with ensemble MLP classifiers for pseudo-labeling.
Label spreading to propagate labels through data similarity
* Bayesian Neural Networks (BNNs) to model prediction uncertainty,

set and improves by using patterns
from the large unlabeled set. +

* This helps models scale without * Designed custom BNN with epistemic and aleatoric uncertainty
needing manual labeling. estimation.

* Evaluated model across varying percentages of labeled data
(5% to 80%).



What are SSL Techniques used ?

Self-Training

Self-Training Process

Train Predict High
Classifier Pseudo-Labels Confidence
(on uniabeled data) Threshold?

Stop
(Converged)

Add Pseudo-
Labeled Data
to training set

e Use an ensemble of MLPs.

* Add high-confidence pseudo-labels

(probability ) to labeled set.

Label Spreading

K-NN graph
Label Spreading Process

Labels spread on a graph based on
feature similarity

Build a kNN graph of the data points.
Spread labels across nearby (similar)
nodes.

Captures structure in the data.
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Bayesian Neural Networks (BNNs) -
Neural Network (NNs) with probability distributions over weights
Bayesian Neural Networks (BNNs) Uncertainty Estimation P
Uncertainty In smart grids, wrong predictions can cause
Bayesian ESt'mat'°" instability. So, we need to know not just what the
Layers L model predicts — but how confident it is.
Dropout

Aleatoric Uncertainty
* Comes from data noise.
e Can't be reduced even with more data.

Eplstemlc

Uncertainty
Estimation

. . . Epistemic Uncertainty
* Unlike standard NNs, BNNs assume each weight is not
i T . Comes from lack of knowledge or data.
fixed but comes from a distribution. .
T ) ) Do Can be reduced by giving the model more
* This gives confidence in every prediction.
) R examples.
* Handles uncertainty, robust with little data.

BNNs help quantify both, giving utilities a “confidence score” along with each phase prediction.
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How We Did It: Data, Training & Resul\

Prediction + Phase Assignment

Labeled +

Feature Extraction SSL Framework Uncertainty

Unlabeled Data Estimation

~N—
Upper confidence Limit

: ani confidence Limit

Prediction Evaluation Uncertainty estimation

m Model Evaluation
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Fig. 4: Proposed SSL framework applied

. Dataset: Real utility data from Duquesne Light Company. on utility AMI datasets

. Features: Max, Min, Avg Voltage; Power (P); Impedance (RO, X0, R1, X1).



Accuracy (%)

TABLE I: Results of SSL Algorithms With Uncertainty Estimation.

Results

Training and Testing Accuracies of Semi-Supervised Learning Techniques

--e-- Self Training Training
—=— Self Training Testing
Label Spreading Training
Label Spreading Testing
--e-- Bayesian Nn Training
—a— Bayesian Nn Testing

10 20

30 40

50 60

Percentage of Labeled Data

70 80

Fig. 5: Comparison of different SSL algorithms.

Ground Truth | Self Training | Label Spreading BNNs
Percentage (Accuracy) (Accuracy) (Accuracy)
5% 3491 £0.11 4434 + 0.16 64.15 £ 0.14
10% 41.51 £0.12 55.66 = 0.13 90.57 £ 0.11
20% 4528 £ 0.11 65.09 + 0.11 94.34 + 0.10
30% 82.08 £ 0.12 59.43 + 0.09 90.57 + 0.09
40% 74.53 £ 0.11 68.87 + 0.09 97.17 £ 0.07
50% 90.57 £ 0.13 61.32 + 0.08 98.11 + 0.06
60% 77.36 £ 0.12 75.47 £ 0.08 97.17 £ 0.06
70% 95.28 £ 0.10 69.81 + 0.08 99.06 + 0.06
80% 81.13 £ 0.10 68.87 + 0.08 98.11 + 0.07
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Conclusion

The semi-supervised learning framework combined
with Bayesian Neural Networks enables accurate
phase identification using AMI data.

The proposed approach effectively utilizes limited
and noisy labeled data, achieving up to 99%
accuracy with just 50-70% labeled samples.

By incorporating epistemic and aleatoric
uncertainty estimation, the framework not only
improves prediction performance but also
offers confidence-aware decisions, which are
critical in power system operations.



