

A Multi-Objective Framework for Energy, Cost, and Carbon Trade-offs in Smart Energy Systems

Paper#236

Kundan Kumar¹ and Gelli Ravikumar²

¹Department of Computer Science, Iowa State University, Ames, IA 50010, USA

²Department of Electrical and Computer Engineering, Florida State University, Tallahassee, FL 32306, USA

Email: ¹kkumar@iastate.edu, ²rgelli@fsu.edu

Motivation & Challenge

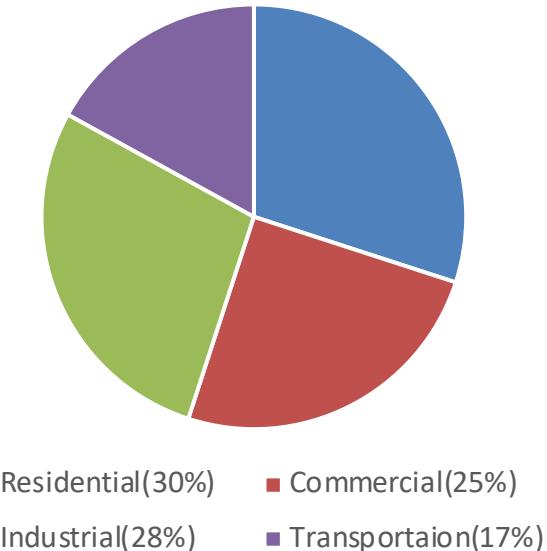
The Energy Challenge

Residential energy accounts for 30% of global consumption and 20% of CO₂ emissions

Key Issues

- Inefficient scheduling
- Limited renewable integration
- Carbon-unaware management
- Cost vs user comfort trade-off

Global Energy Consumption



Opportunity: Optimize appliance scheduling based on dynamic carbon intensity and electricity prices while maintaining user comfort

Research Gap & Contribution

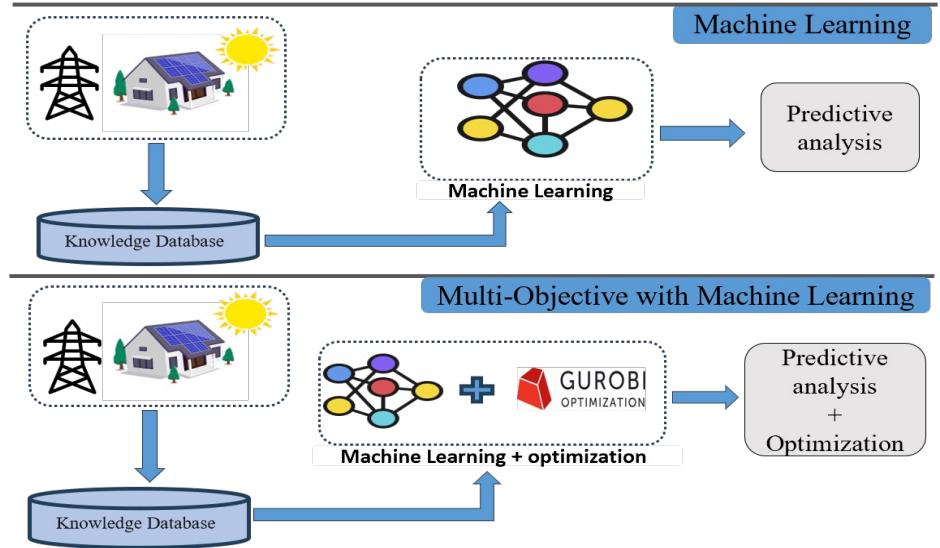
Existing Approaches

ML Models

- ✓ Strong prediction capabilities
- ✗ Lack scheduling optimization

MIP Optimization

- ✓ Cost/emission minimization
- ✗ Overlook consumption uncertainties



Hybrid Framework: Ensemble ML + Robust MIP Optimization

(ML (Predictive Analysis) + Optimization → Predictive Analysis + Optimization)

Key Contributions

- ML-based demand prediction with uncertainty quantification
- Robust MIP constraints ensuring power balance
- Multi-objective optimization for cost, carbon, and energy
- Validated with real household data

Data preprocessing & feature Engineering

Dataset Description

Source: Individual Household Electric Power Consumption [UCI ML Repository]

Duration: Nearly 4 years (2006-2010) | **Sampling:** 15-minute intervals | **Size:** ~10 million rows

Power Calculation

- Convert to Watt-hours:

$$PWh(t) = P_{active}(t) \times (1000/60)$$

- Residual Power:

$$Pother(t) = P_{Wh}(t) - \sum_{i=0}^3 P_{Mi}(t)$$

Feature Engineering

Temporal Features

- Hour: $h_t \in [0, 23]$
- Day: $d_t \in [1, 366]$
- Month: $m_t \in [1, 12]$
- Weekday: [0=Mon, 6=Sun]
- Season: {Winter, Spring, Summer, Fall}

Statistical Features

- $prev_consumption = P_{Wh}(t - 24)$
- $rolling_mean_{24h} = (1/24)\sum P_{Wh}(i)$
- $rolling_std_{24h} = \sqrt{[(1/24)\sum(P_i - \mu)^2]}$
- $rolling_i = M_i / P_{Wh}$

Machine Learning Framework

Ensemble Model Architecture

$$\hat{y}_{ML}(x) = 0.6 \cdot \hat{y}_{RF}(x) + 0.4 \cdot \hat{y}_{XGB}(x)$$

Random Forest Model

- Captures non-linear relationships
- Feature importance weighting

XGBoost Model

- Refines residual errors
- Early stopping for efficiency

Uncertainty Quantification

Ensemble Uncertainty

$$\sigma_{ensemble}(t) = \sqrt{w_{RF}^2 \cdot \sigma_{RF}^2 + w_{XGB}^2 \cdot \sigma_{XGB}^2}$$

Weighted Mean Prediction

$$\mu(t) = w_{RF} \cdot \hat{y}_{RF}(t) + w_{XGB} \cdot \hat{y}_{XGB}(t)$$

Trust Region

$$\text{Prediction Bounds} = [\mu(t) - \sigma_{ensemble}(t), \mu(t) + \sigma_{ensemble}(t)]$$

Innovation: ML predictions guide optimization while uncertainty bounds ensure robustness

Multi-Objective Optimization

Objective Function

$$\min \{ w_1 \cdot \text{Cost} + w_2 \cdot \text{Carbon} + w_3 \cdot \text{Energy} + w_4 \cdot \text{Slack} \}$$

Objective Function Weights

Key Constraints

- Power balance constraint
- Minimum runtime (15 min)
- Energy requirement ($\pm 10\%$)
- ML trust region bounds

Multi-Objective Optimization

Objective Function

$$\min \{ w_1 \cdot \text{Cost} + w_2 \cdot \text{Carbon} + w_3 \cdot \text{Energy} + w_4 \cdot \text{Slack} \}$$

Cost Objective

$$C_t = \sum_{t \in T} \sum_{a \in A} power_{t,a} * P_t * x_{t,a} + slack_t * P_{penalty}$$

Carbon Objective

$$CI_t = \sum_{t,a} power_{t,a} * CI_t * x_{t,a}$$

Energy Objective

$$\sum_{t,a} power_{t,a} * x_{t,a}$$

Slack Penalty

$$slack_t = \sum_t \kappa \times s_t$$

$\kappa = 1000$ (penalty coefficient)

Decision Variables

- $x_{t,a} \in \{0, 1\}$: Binary variable for appliance a at time t (ON=1, OFF=0)
- $slack_t \geq 0$: Power balance adjustment indicating unmet demand

Optimization Constraints

- **Power Balance Constraint**

$$\sum_a power_{t,a} \cdot x_{t,a} \leq P_{active,t} + slack_t, \forall t$$

- Ensures total demand \leq available supply

- **Energy Requirement Constraint**

$$0.9E_a \leq \sum_{t \in T} power_{t,a} \cdot x_{t,a} \leq 1.1E_a, \forall a \in A$$

- $E_a = \sum_{t \in T} power_{t,a}$ (baseline energy)
- Maintains $\pm 10\%$ of baseline to ensure user comfort

- **ML Trust Region Constraint**

$$|\sum_{a \in A} power_{t,a} \cdot x_{t,a} - \hat{y}_t| \leq \varepsilon_t$$

- \hat{y}_t : ML-predicted optimal load
- ε_t : Uncertainty bound (90% confidence interval)

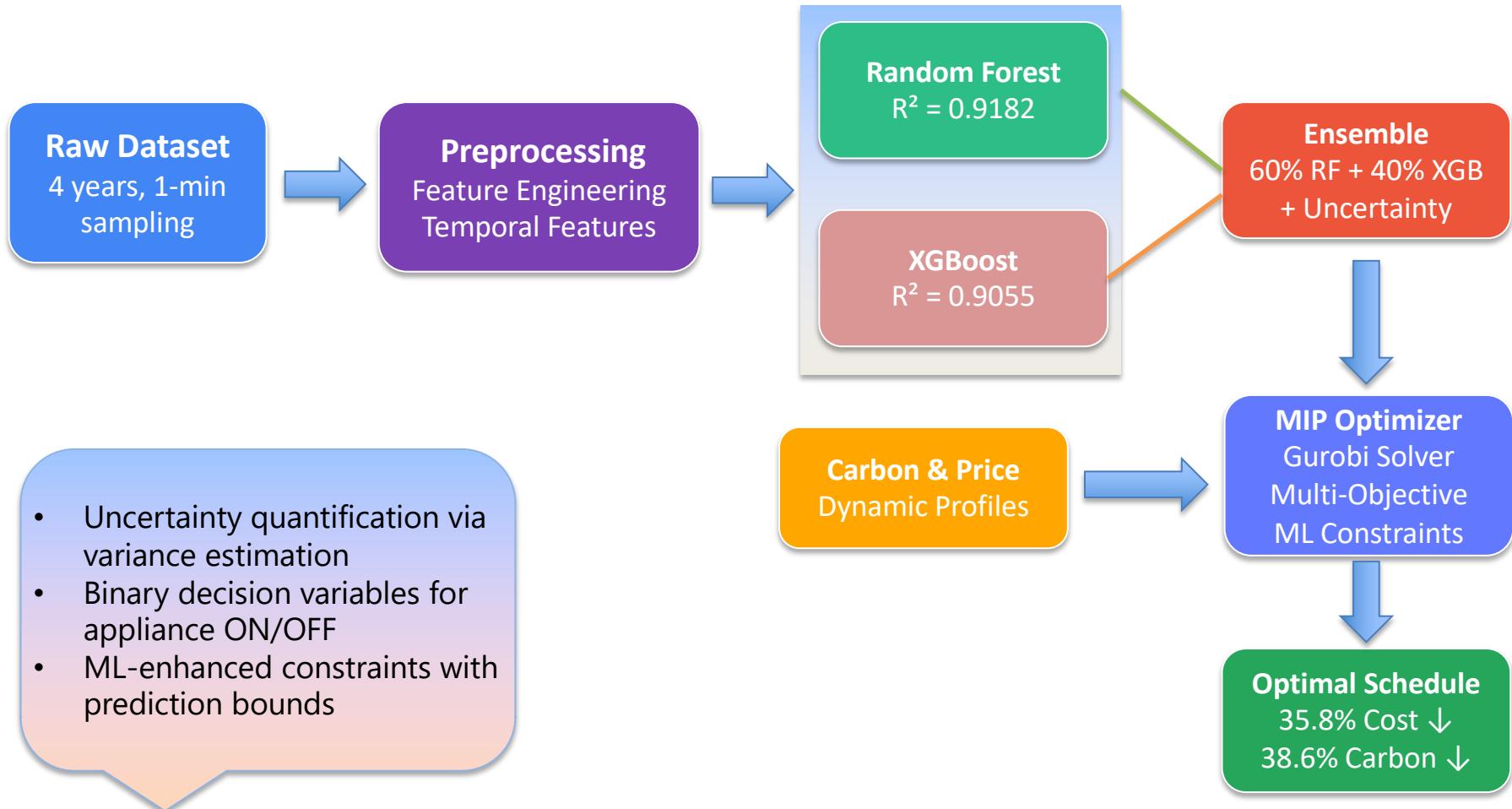
- **Minimum Runtime Constraint**

$$\sum_{i=0}^{k-1} x_{t+i,a} \geq k * (x_{t,a} - x_{t-1,a}), \quad \forall t, a$$

- $k = 3$ intervals (15 minutes) to prevent frequent switching

Hybrid ML-MIP Framework

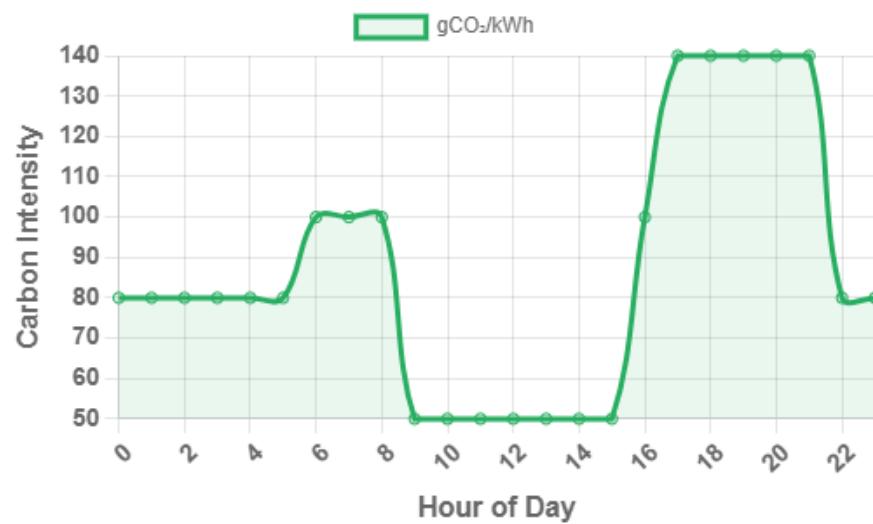
System Architecture



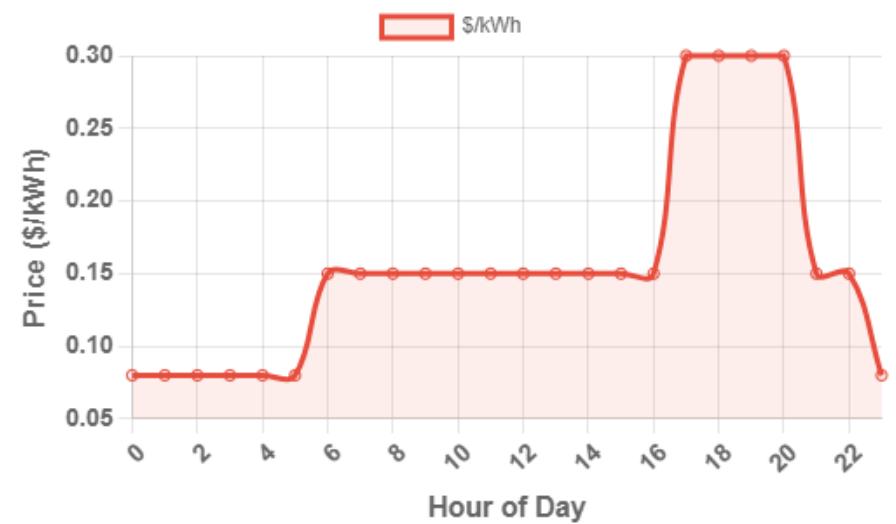
Innovation: ML predictions guide optimization while uncertainty bounds ensure robustness

Dynamic Carbon & Price Profiles

Carbon Intensity



Electricity Price



Strategy: Shift loads to low-cost, low-carbon periods (solar hours & off-peak)

Experimental Results

ML Model Performance

Random Forest

R² Score: 0.9182

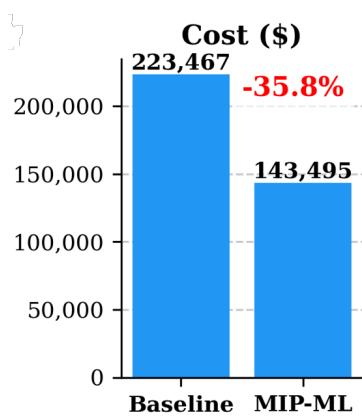
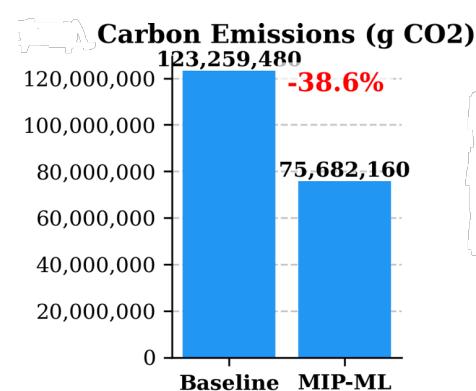
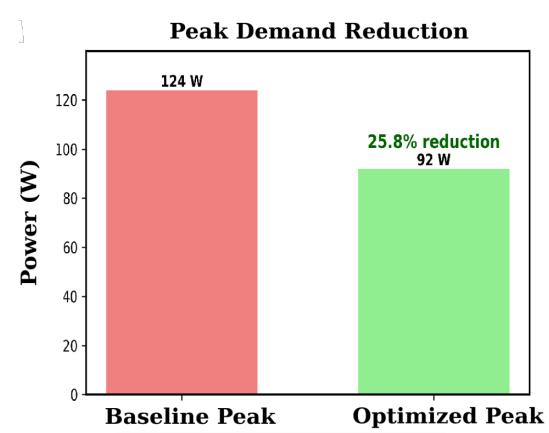
200 trees, max depth 20

XGBoost

R² Score: 0.9055

200 estimators, depth 8

Optimization Efficiency



Comparison with State-of-the-Art

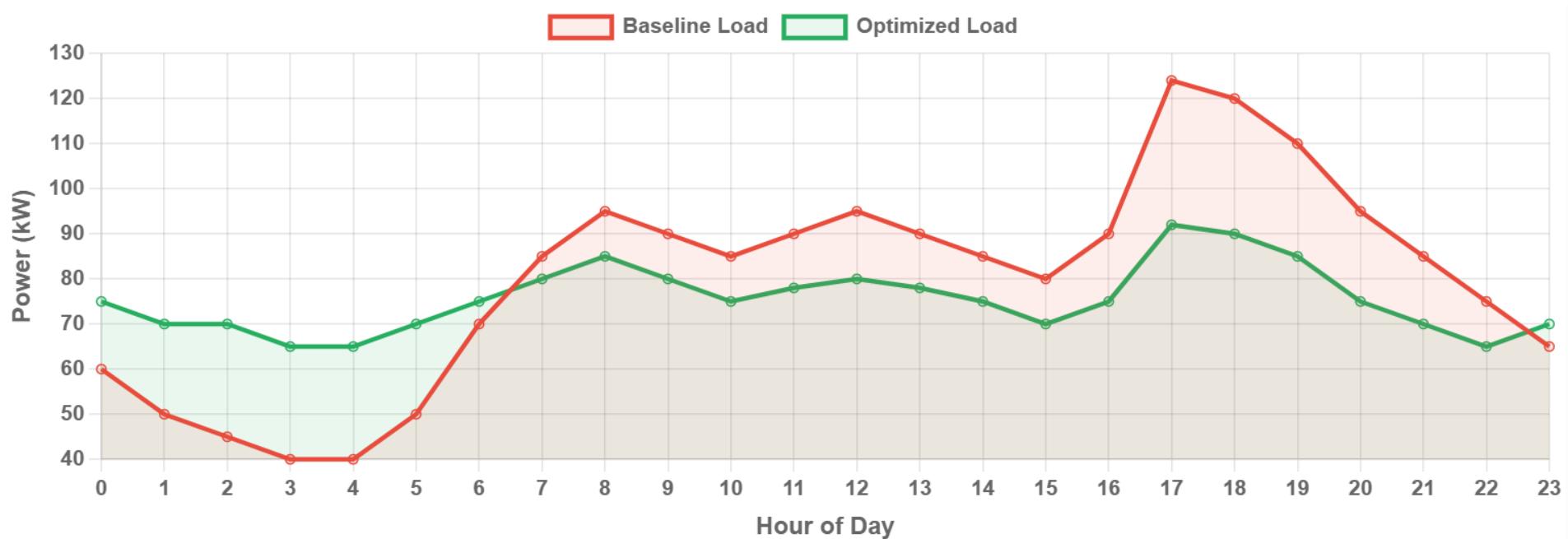
Approach	Technique	Key Results	Limitation
Ahmad et al. [2]	MILP	~20% cost reduction	No ML integration
Moser et al. [3]	MILP	3–6% savings	Deterministic only
Fiorini et al. [6]	Optimization	10% carbon reduction	No specific savings data
Ghimire et al. [10]	CNN–LSTM–MLP	Better forecasting	No scheduling
Our Approach	Ensemble ML + MIP	35.8% cost, 38.1% carbon	Comprehensive solution

Our Competitive Advantages

- Integrated ML + optimization approach
- Highest cost savings reported in literature
- Multi-objective balancing of cost, carbon, and energy
- Uncertainty-aware robust scheduling

Load Shifting & Peak Demand Reduction

Daily Load Profile: Before & After Optimization

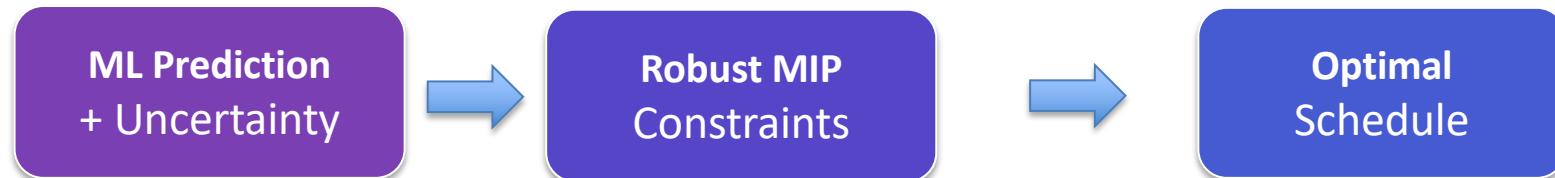


Before Optimization: Peak load 124 kW during expensive hours (17-20h)

After Optimization: Shifted to off-peak, reduced to 92 kW

Key Insights & Impact

Technical Innovations



Real-World Impact

Economic Benefits

- 35.8% cost savings
- Reduced energy bills
- Grid stability improvement

Environmental Benefits

- 38.6% emission reduction
- Support for renewables
- Decarbonization pathway

Bottom Line: Intelligent load shifting achieves significant sustainability gains without compromising user comfort

Conclusion & Future Work

Summary

- Hybrid ML-MIP framework for carbon-aware management
- Achieved 35.8% cost and 38.6% emission reductions
- Reduced peak demand by 25.8%

Future Research Directions

Technical Extensions

- Deep temporal models (LSTM, Transformers)
- Federated learning for privacy
- Real-time smart meter integration

Scalability

- Multi-household coordination
- Community-level optimization
- Grid-scale deployment

Impact

The framework for residential energy decarbonization with significant economic benefits

Thank You!

Questions?

Kundan Kumar¹ and Gelli Ravikumar²

¹Department of Computer Science, Iowa State University,

²Department of Electrical and Computer Engineering, Florida State University

Email: ¹kkumar@iastate.edu, ²rgelli@fsu.edu

Funding: US NSF Grant CNS 2105269, US DOE CESER Grant DE-CR000016,
Iowa Energy Center Grant #21-IEC-009