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Motivation & Challenge

The Energy Challenge

Residential energy accounts for 30% of global consumption and 20% of CO, emissions

Global Energy Consumption

m Residential(30%) = Commercial(25%)
® Industrial(28%) m Transportaion(17%)

Key Issues

* Inefficient scheduling

e Limited renewable integration
e Carbon-unaware management
e Cost vs user comfort trade-off

Opportunity: Optimize appliance scheduling based on dynamic carbon intensity

and electricity prices while maintaining user comfort



Research Gap & Contribution

Existing Approaches
ML Models % O -
v Strong prediction capabilities  m—
X Lack scheduling optimization l, T

R . :l \: ‘/;“4 Predictive
MIP Opt|mlzat|0n Nl @:} il “ OGPPMRZQENI - ana—l‘_ysis

v Cost/emission minimization l - s Optimization
Machine Learning + optimization

X Overlook consumption uncertainties I
@ owledge Databj

XX

Hybrid Framework: Ensemble ML + Robust MIP Optimization

(ML (Predictive Analysis) + Optimization — Predictive Analysis + Optimization)

Key Contributions

* ML-based demand prediction with uncertainty quantification

e Robust MIP constraints ensuring power balance
e Multi-objective optimization for cost, carbon, and energy

e Validated with real household data



Data preprocessing & feature Engineering

Dataset Description

Source: Individual Household Electric Power Consumption [UCI ML Repository]
Duration: Nearly 4 years (2006-2010) | Sampling: 15-minute intervals | Size: ~10 million rows

Power Calculation
* Convert to Watt-hours:

PWh(t) = Pgive (t) x (1000/60)
* Residual Power: 5

Pother(t) = Pyp(t) —ZPMi(t)

Feature Engineering

Temporal Features Statistical Features

* Hour: h; €0, 23]  prev_consumption = Py, (t — 24)

« Day:d; €[1, 366] * rolling_mean,,, = (1/24)X Pyy(i)

* Month:m; € [1, 12] *  rolling_stdyq, = V[(1/24)2(P; — w)?]

* Weekday: [0=Mon, 6=Sun]

* rollingi;=M; /P
* Season: {Winter, Spring, Summer, Fall} 8i=M;/ Pwn




Machine Learning Framework

Ensemble Model Architecture

Ym(x) = 0.6 « Ype(x) + 0.4 - Yygp(x)

h / A
Random Forest Model XGBoost Model
» Captures non-linear * Refines residual errors
relationships » Early stopping for efficiency
* Feature importance weighting

— o — o

Uncertainty Quantification

Ensemble Uncertainty Oensemble(t) = V[WRF? - Oge? + WXGB? - Oxgg’]

Weighted Mean Prediction ~ K(t) = WRF - Yge(t) + WXGB - Yygg(t)

Trust Region Prediction Bounds = [u(t) - censemble(t), pu(t) + censemble(t

Innovation: ML predictions guide optimization while uncertainty bounds ensure robustness




Multi-Objective Optimization

Objective Function

min { wi-Cost + wy-Carbon + ws:Energy + ws-Slack }

Objective Function Weights

m Cost (40%)
m Carbon (30%)
M Energy (30%)

Key Constraints

« Power balance constraint  Energy requirement (+10%)
*  Minimum runtime (15 min) * ML trust region bounds



Multi-Objective Optimization

Objective Function

min { wi-Cost + wy-Carbon + ws:Energy + ws-Slack }

e .. ) 4 )
Cost Objective Carbon Objective
Ce = z z
acA
9 W, \_ ta /
4 . . N
Energy Objective Slack Penalty
slacky = X Kk X s;
z POWETt,qa * Xt,a k = 1000 (penalty coef ficient)
" J

Decision Variables
* Xx; 4 € {0,1}: Binary variable for appliance a at time t (ON=1, OFF=0)
» slack; = 0: Power balance adjustment indicating unmet demand
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Optimization Constraints

Lopowery g » Xeg < Puctiver + slack, Vt

* Power Balance Constraint
e Ensures total demand £ available supply

—_—

09Ea < X%, _rpowert , - xt , < 1.1Ea,Va € A
* E, = X, _rpowery, (baseline energy)
* Maintains *10% of baseline to ensure user comfort

{- Energy Requirement Constraint
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ML Trust Region Constraint
12 EApowert,a ’ xt’a -Vl < &
* {.: ML-predicted optimal load
* ¢.: Uncertainty bound (90% confidence interval)

—_—
/- Minimum Runtime Constraint

k—1

thﬂ',a =k * (xt,a _xt—l,a)r Vt,a

=0
N * k = 3 intervals (15 minutes) to prevent frequent switching

/
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Hybrid ML-MIP Framework

System Architecture

Raw Dataset
4 years, 1-min

Preprocessing
Feature Engineering

sampling Temporal Features

» Uncertainty quantification via
variance estimation

* Binary decision variables for
appliance ON/OFF

* ML-enhanced constraints with
prediction bounds
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Random Forest

R2=0.9182
Ensemble

60% RF + 40% XGB
+ Uncertainty

XGBoost
R? =0.9055

MIP Optimizer
Gurobi Solver
Multi-Objective
ML Constraints

Carbon & Price
Dynamic Profiles

Optimal Schedule
35.8% Cost |
38.6% Carbon

Innovation: ML predictions guide optimization while uncertainty bounds ensure robustness



Dynamic Carbon & Price Profiles

Carbon Intensity Electricity Price
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Strategy: Shift loads to low-cost, low-carbon periods (solar hours & off-peak)



Experimental Results

ML Model Performance

Random Forest XGBoost
R2 Score: 0.9182 R? Score: 0.9055
200 trees, max depth 20 200 estimators, depth 8

Optimization Efficiency

Peak Demand Reduction

Cost ($) Carbon Emissions (g CO2)
223,467 123,259,480 aw
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Comparison with State-of-the-Art

Ahmad et al. [2] MILP ~20% cost reduction No ML integration
Moser et al. [3] MILP 3—-6% savings Deterministic only
Fiorini et al. [6] Optimization 10% carbon reduction No specific savings data
Ghimire et al. [10] CNN-LSTM—-MLP Better forecasting No scheduling
Our Approach Ensemble ML + MIP 35.8% cost, 38.1% Comprehensive
carbon solution

Our Competitive Advantages

* Integrated ML + optimization approach

* Highest cost savings reported in literature

* Multi-objective balancing of cost, carbon, and energy
e Uncertainty-aware robust scheduling



Load Shifting & Peak Demand Reduction

Daily Load Profile: Before & After Optimization

[__] Baseline Load [__] Optimized Load
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expensive hours (17-20h) 92 kW

[ Before Optimization: Peak load 124 kW during J {After Optimization: Shifted to off-peak, reduced to J




Key Insights & Impact

Technical Innovations

ML Prediction Robust MIP Optimal

+ Uncertainty Constraints Schedule

Real-World Impact

Economic Benefits Environmental Benefits
¢ 35.8% cost savings ® 38.6% emission reduction
e Reduced energy bills e Support for renewables

e Grid stability improvement e Decarbonization pathway




Conclusion & Future Work

Summary

e Hybrid ML-MIP framework for carbon-aware management
* Achieved 35.8% cost and 38.6% emission reductions
e Reduced peak demand by 25.8%

Future Research Directions

Technical Extensions Scalability

e Deep temporal models (LSTM, Transformers) e Multi-household coordination
e Federated learning for privacy e Community-level optimization
e Real-time smart meter integration e Grid-scale deployment

Impact

The framework for residential energy decarbonization with significant economic benefits
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