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Motivation & Challenge

The Energy Challenge
Residential energy accounts for 30% of global consumption and 20% of CO₂ emissions

Key Issues

• Inefficient scheduling 
• Limited renewable integration
• Carbon-unaware management
• Cost vs user comfort trade-off

Global Energy Consumption

Residential(30%) Commercial(25%)

Industrial(28%) Transportaion(17%)

Opportunity: Optimize appliance scheduling based on dynamic carbon intensity 
and electricity prices while maintaining user comfort



Research Gap & Contribution
Existing Approaches

ML Models
✓ Strong prediction capabilities
✗ Lack scheduling optimization

MIP Optimization
✓ Cost/emission minimization
✗ Overlook consumption uncertainties

Hybrid Framework: Ensemble ML + Robust MIP Optimization

Key Contributions
• ML-based demand prediction with uncertainty quantification 
• Robust MIP constraints ensuring power balance 
• Multi-objective optimization for cost, carbon, and energy 
• Validated with real household data

(ML (Predictive Analysis) + Optimization → Predictive Analysis + Optimization)



Data preprocessing & feature Engineering
Dataset Description

Feature Engineering

Temporal Features

• Hour: ℎ! ∈ [0, 23]
• Day: 𝑑! ∈ [1, 366]
• Month: 𝑚! ∈ [1, 12]
• Weekday: [0=Mon, 6=Sun]
• Season: {Winter, Spring, Summer, Fall}

Statistical Features

• prev_consumption = 𝑃𝑊ℎ(𝑡 − 24)
• rolling_mean24h = (1/24)Σ 𝑃𝑊ℎ(𝑖)
• rolling_std24h = √[(1/24)Σ(𝑃𝑖 − 𝜇)²]
• rollingi = 𝑀𝑖	/	𝑃𝑊ℎ

Power Calculation
• Convert to Watt-hours:
	 𝑃𝑊ℎ(t) = 𝑃𝑎𝑐𝑡𝑖𝑣𝑒(t) × (1000/60)
• Residual Power:
	 𝑃𝑜𝑡ℎ𝑒𝑟(𝑡) = 𝑃𝑊ℎ(𝑡) -

Source: Individual Household Electric Power Consumption [UCI ML Repository]
Duration: Nearly 4 years (2006-2010) | Sampling: 15-minute intervals | Size: ~10 million rows

$
!"#

$

𝑃%!(𝑡)



Machine Learning Framework
Ensemble Model Architecture

Innovation: ML predictions guide optimization while uncertainty bounds ensure robustness

• Captures non-linear 
relationships

• Feature importance weighting

ŷML(x) = 0.6 · ŷRF(x) + 0.4 · ŷXGB(x)

Random Forest Model
• Refines residual errors
• Early stopping for efficiency

XGBoost Model

σensemble(t) = √[wRF² · σRF² + wXGB² · σXGB²]

Uncertainty Quantification

Ensemble Uncertainty

Weighted Mean Prediction μ(t) = wRF · ŷRF(t) + wXGB · ŷXGB(t)

Prediceon Bounds = [μ(t) − σensemble(t), μ(t) + σensemble(t)]Trust Region



Multi-Objective Optimization

Objective Function

min { w₁·Cost + w₂·Carbon + w₃·Energy + w₄·Slack }

Key Constraints

Objective Function Weights

Cost (40%)
Carbon (30%)
Energy (30%)

• Power balance constraint
• Minimum runtime (15 min)

• Energy requirement (±10%)
• ML trust region bounds



Multi-Objective Optimization

Objective Function

min { w₁·Cost + w₂·Carbon + w₃·Energy + w₄·Slack }

Decision Variables
• 𝒙𝒕, 𝒂	 ∈ 	 {𝟎, 𝟏}:	Binary variable for appliance a at time t (ON=1, OFF=0)
• slackt ≥ 0: Power balance adjustment indicating unmet demand

Slack Penalty
	𝑠𝑙𝑎𝑐𝑘! = Σ𝑡	𝜅 × 𝑠𝑡
𝜅 = 1000 (𝑝𝑒𝑛𝑎𝑙𝑡𝑦	𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡)M
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Cost Objective



Optimization Constraints
• Power Balance Constraint

Σ𝑎 𝑝𝑜𝑤𝑒𝑟!,+ · 𝑥!,+ ≤ 𝑃+7!893,! + 𝑠𝑙𝑎𝑐𝑘!, ∀𝑡
• Ensures total demand ≤ available supply

• Minimum Runtime Constraint

M
8:;

<=>

𝑥!?8,+ ≥ 	𝑘	 ∗ 𝑥!,+ 	− 𝑥!=>,+ , ∀𝑡, 𝑎

• k = 3 intervals (15 minutes) to prevent frequent switching

• Energy Requirement Constraint
0.9𝐸𝑎 ≤ Σ𝑡 ∈ 𝑇 𝑝𝑜𝑤𝑒𝑟𝑡, 𝑎 · 𝑥𝑡, 𝑎 ≤ 1.1𝐸𝑎, ∀𝑎 ∈ 𝐴

• 𝐸𝑎 = Σ𝑡 ∈ 𝑇 𝑝𝑜𝑤𝑒𝑟!,+(baseline energy)
• Maintains ±10% of baseline to ensure user comfort

• ML Trust Region Constraint
|Σ𝑎 ∈ 𝐴 𝑝𝑜𝑤𝑒𝑟𝑡, 𝑎 · 𝑥𝑡, 𝑎 − ŷ𝑡| ≤ 𝜀𝑡

• ŷt: ML-predicted optimal load
• εt: Uncertainty bound (90% confidence interval)



Hybrid ML-MIP Framework
System Architecture

Innovation: ML predictions guide optimization while uncertainty bounds ensure robustness

Raw Dataset
4 years, 1-min 

sampling

Preprocessing
Feature Engineering
Temporal Features

Ensemble
60% RF + 40% XGB

+ Uncertainty

Carbon & Price
Dynamic Profiles

MIP Optimizer
Gurobi Solver

Multi-Objective
ML Constraints

Optimal Schedule
35.8% Cost ↓

38.6% Carbon ↓

Random Forest
R² = 0.9182

XGBoost
R² = 0.9055

• Uncertainty quantification via 
variance estimation

• Binary decision variables for 
appliance ON/OFF

• ML-enhanced constraints with 
prediction bounds



Dynamic Carbon & Price Profiles

Strategy: Shift loads to low-cost, low-carbon periods (solar hours & off-peak)



Experimental Results

ML Model Performance

Random Forest
R² Score: 0.9182
200 trees, max depth 20

XGBoost
R² Score: 0.9055

200 estimators, depth 8

Optimization Efficiency

Cost Reduction
35.8%

$223K → $143K

Carbon Reduction
38.6%

123M → 76M g CO₂

Peak Demand
25.8%

124 kW → 92 kW



Comparison with State-of-the-Art

Approach Technique Key Results Limitation

Ahmad et al. [2] MILP ~20% cost reduction No ML integration

Moser et al. [3] MILP 3–6% savings Deterministic only

Fiorini et al. [6] Optimization 10% carbon reduction No specific savings data

Ghimire et al. [10] CNN–LSTM–MLP Better forecasting No scheduling

Our Approach Ensemble ML + MIP 35.8% cost, 38.1% 
carbon

Comprehensive 
solution

Our Competitive Advantages

• Integrated ML + optimization approach
• Highest cost savings reported in literature
• Multi-objective balancing of cost, carbon, and energy
• Uncertainty-aware robust scheduling  



Load Shifting & Peak Demand Reduction
Daily Load Profile: Before & After Optimization

Before Optimization: Peak load 124 kW during 
expensive hours (17-20h)

After Optimization: Shifted to off-peak, reduced to 
92 kW



Key Insights & Impact

Technical Innovations

Real-World Impact

Economic Benefits
• 35.8% cost savings
• Reduced energy bills
• Grid stability improvement

Environmental Benefits
• 38.6% emission reduction
• Support for renewables
• Decarbonization pathway

Bottom Line: Intelligent load shifting achieves significant sustainability
gains without compromising user comfort

ML Prediction
+ Uncertainty

Robust MIP
Constraints

Optimal
Schedule



Conclusion & Future Work

• Hybrid ML-MIP framework for carbon-aware management
• Achieved 35.8% cost and 38.6% emission reductions
• Reduced peak demand by 25.8%

Future Research Directions

Technical Extensions

• Deep temporal models (LSTM, Transformers)
• Federated learning for privacy
• Real-time smart meter integration

Scalability

• Multi-household coordination
• Community-level optimization
• Grid-scale deployment

Impact
The framework for residential energy decarbonization with significant economic benefits

Summary
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