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Modeling & Implementation of SSL Algorithms Numerical Results
Modeling and implementation require preprocessing of datasets, training the SSL algorithms, and making Training and Testing Accuracies of Semi-Supervised Learning Techniques

predictions for the phase identification, along with uncertainty estimation. An overview of the approach is shown 100
in Algorithm 1.
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* where L is the supervised loss (e.g., cross-entropy), R is the unsupervised regularization term, and A is a Table 1: Results of SSL Algorithms With Uncertainty Estimation.
hyperparameter that balances the contribution of the supervised and unsupervised components. Conclusions and Future Work
We then run three SSL algorithms: The proposed framework addresses the challenge of

limited labeled data in phase identification using SSL and
uncertainty estimation. By integrating Bayesian Neural
Networks, we achieved 98% = 0.08 accuracy with robust
- Label Spreading Classifiers — a graph-based SSL technique that spreads labels across similar data points uncertainty quantification. It also provides critical insights
into the minimum data needed for reliable phase
identification, aiding future data collection and labeling

» Self-Training With Ensemble Multilayer Perceptron Classifiers — an approach to enhance the labeled dataset
through iterative pseudo-labeling using an ensemble of MLP classifiers

- Bayesian Neural Networks — a probabilistic approach to understanding predictions by estimating epistemic and
aleatoric uncertainties
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