Advanced Semi-Supervised Learning With Uncertainty Estimation for Phase Identification in Distribution Systems Kundan Kumar, Kumar Utkarsh, Jiyu Wang, and Harsha Vardhana Padullaparti National Renewable Energy Laboratory, Golden, CO, USA ## **Background and Motivation** Accurately identifying the phase connectivity of customers in a distribution system is crucial for system efficiency and advanced grid operations. However, utilities face key challenges in identifying phase connectivity of customers, They: - need to send field crews to manually check for phase connectivity of customers - need to update the phase connectivity database after every outage restoration - need to update the phase connectivity database every time a new customer is added to the system To overcome these challenges, automated phase identification methods using supervised learning have been developed. However, their performance typically *suffers* because: - they often require substantial labeled ground truth training data - their performance drops significantly with *limited labeled data* ## **Proposed SSL Framework** Fig. 1: Proposed SSL framework for utility AMI datasets ## Modeling & Implementation of SSL Algorithms Modeling and implementation require *preprocessing* of datasets, *training* the SSL algorithms, and making predictions for the phase identification, along with uncertainty estimation. An overview of the approach is shown in *Algorithm 1*. - Using the utility dataset D, a filtered dataset D' is created by removing missing values, timestamps, and anomalies - After generating D', we extract the *feature set F* for training $$F = \{R_0, X_0, R_1, X_1, P, \text{Max } V, \text{Min } V, \text{AVG } V\}$$ - The dataset D' is then *split* into 70% for training and 30% for testing - Within the training set, we create *two subsets*: D_L with known phase assignments and D_{II} with unknown assignments. D_L is used for initial model training, while D_L is used to predict pseudo-labels based on the learned model - The training set is further divided into increments of 5%, 10%, and up to 80% for D_L , with the remaining data forming D_L #### Algorithm 1 Semi-Supervised Phase Identification - 1: **Input:** Dataset $D = (x_i, y_i)_{i=1}^N$, Label percentages, P - 2: Output: Accuracies, Predictions, Uncertainties - 3: Filter D to D' and extract features X, labels Y - 4: Split D' into D_{dev}, D_{test} with 70:30 ratio - 5: for $p \in P$ do - Select $n = |D_{dev}| \times (p/100)$ labeled samples - Form $D_{labeled}$, $D_{unlabeled}$ from D_{dev} - Create $X_{semi} = X_{labeled} \cup X_{unlabeled}$ - Set $y_{semi} = |y_{labeled}, -1, ..., -1|$ - Run self-training, label spreading on (X_{semi}, y_{semi}) - Run BNNs on $(X_{labeled}, y_{labeled})$ - Evaluate all methods on D_{test} - 13: **end for** - 14: **return** Results for each label percentage P In **SSL**, the goal is to use both labeled and unlabeled data to develop a classifier $f: \to \{A,B,C\}$ that effectively predicts phase connectivities. The learning *objective* is defined as $\min_{f} \left(\frac{1}{n_L} \sum_{i=1}^{n_L} \mathcal{L}(f(\mathbf{x}_i), y_i) + \lambda \cdot \mathcal{R}(f, \mathcal{D}_U) \right)$ where \mathcal{L} is the supervised loss (e.g., cross-entropy), \mathcal{R} is the unsupervised regularization term, and λ is a hyperparameter that balances the contribution of the supervised and unsupervised components. #### We then run three SSL algorithms: - Self-Training With Ensemble Multilayer Perceptron Classifiers an approach to enhance the labeled dataset through iterative pseudo-labeling using an ensemble of MLP classifiers - Label Spreading Classifiers a graph-based SSL technique that spreads labels across similar data points - Bayesian Neural Networks a probabilistic approach to understanding predictions by estimating epistemic and aleatoric uncertainties ### **Test System & Parameters** Fig. 2: Network topology of the distribution feeder. ## **Numerical Results** Fig. 4: Comparison of different SSL algorithms. | Ground Truth | Self Training | Label Spreading | BNNs | |---------------------|------------------|------------------|------------------| | Percentage | (Accuracy) | (Accuracy) | (Accuracy) | | 5% | 34.91 ± 0.11 | 44.34 ± 0.16 | 64.15 ± 0.14 | | 10% | 41.51 ± 0.12 | 55.66 ± 0.13 | 90.57 ± 0.11 | | 20% | 45.28 ± 0.11 | 65.09 ± 0.11 | 94.34 ± 0.10 | | 30% | 82.08 ± 0.12 | 59.43 ± 0.09 | 90.57 ± 0.09 | | 40% | 74.53 ± 0.11 | 68.87 ± 0.09 | 97.17 ± 0.07 | | 50% | 90.57 ± 0.13 | 61.32 ± 0.08 | 98.11 ± 0.06 | | 60% | 77.36 ± 0.12 | 75.47 ± 0.08 | 97.17 ± 0.06 | | 70% | 95.28 ± 0.10 | 69.81 ± 0.08 | 99.06 ± 0.06 | | 80% | 81.13 ± 0.10 | 68.87 ± 0.08 | 98.11 ± 0.07 | Table 1: Results of SSL Algorithms With Uncertainty Estimation. ### **Conclusions and Future Work** The proposed framework addresses the challenge of limited labeled data in phase identification using SSL and uncertainty estimation. By integrating Bayesian Neural **Networks**, we achieved 98% ± 0.08 accuracy with robust uncertainty quantification. It also provides critical insights into the *minimum data* needed for reliable phase identification, aiding future data collection and labeling efforts.