

Aquatic Risk Assessment Organophosphate insecticide mixtures in Washington surface waters

Chlorpyrifos, diazinon, & malathion: 2018 – 2020 preliminary analysis

Jadey Ryan Land Resources and Environmental Sciences Master's Student | MSU Natural Resources Assessment Section | WSDA

WSDA Surface Water Monitoring Program

- Natural Resources Assessment Section established in 2003
- Sample agricultural and urban streams Mar – Nov
 - All streams currently or historically provided habitat for ESA listed salmonids

Monitoring Sites

	ESA Status	
Chinook	Endangered	
Chum	Protected	
Coho	Protected	
Sockeye	Endangered	
Steelhead Trout	Threatened	

Detection Frequencies

Measured Concentrations

- • 0.75 Concentration (µg/L) Mixture . • С 0.50 -D М CD CM DM CDM 0.25 • . 0.00-Chlorpyrifos Malathion Diazinon Pesticide
 - Concentrations generally higher and more variable in mixtures with C & M

Measured Concentrations

 Concentrations generally higher and more variable in mixtures with C & M

Benchmark Quotient (BQ)

	Invertebrate		Fish		
	Acute (µg/L)	Chronic (µg/L)	Acute (µg/L)	Chronic (µg/L)	
Chlorpyrifos	0.05	0.04	0.9	0.57	
Diazinon	0.105	0.17	45	0.55	
Malathion	0.049	0.06	2.05	8.6	
Aquatic Life Benchmarks (EPA 2021)					
Individual $BQ = \frac{\text{Measured Concentration}}{\text{Benchmark}}$ $Mixture BQ = \sum_{i=1}^{n} \frac{\text{Measured Concentration}_i}{\text{Benchmark}_i}$					

BQ>1 Frequencies

Conclusions

- C & M most frequently detected AND most frequently BQ>1
 - Likely primary contributors to overall toxicity of each mixture

• Mixtures after C tolerance revocation?

Conservatism and Uncertainty

- EPA ALBs apply safety factor (LOC) of 0.5 or 1 to lowest toxicity value (EC₅₀, LC₅₀, or NOAEC)
- BQ analysis did not consider:
 - Water quality parameters
 - Pesticide properties
 - Spatial or temporal patterns
- Only assessed OP mixtures
 - In 2018, up to 44 different analytes were detected in a single sample

Conservatism and Uncertainty

 EPA ALBs apply safety factor (LOC) of 0.5 or 1 to lowest toxicity value (EC₅₀, LC₅₀, or NOAEC)

- BQ analysis did not consider:
 - Water quality parameters
 - Pesticide properties
 - Spatial or temporal patterns
- Only assessed OP mixtures
 - In 2018, up to 44 different analytes were detected in a single sample

Future Work

 Refine RA based on more specific scenarios

 Assess more
pesticide groups with same mode of action

Acknowledgements

- WSDA NRAS
- Dr. Robert Peterson, Montana State University

 Dept. of Ecology Manchester
Environmental Lab

Thank you!

Jadey Ryan

Environmental Specialist, Olympia Surface Water Monitoring 360.819.7855 jryan@agr.wa.gov

Abigail Nickelson

Natural Resource Scientist, Yakima Surface Water Monitoring Database Lead 509.895.9338 <u>anickelson@agr.wa.gov</u>

Katie Noland Environmental Specialist, Olympia Surface Water Monitoring Lead 360.819.3690 knoland@agr.wa.gov

Matt Bischof

Natural Resource Scientist, Yakima Surface Water Monitoring Lead 509.895.9338 <u>mbischof@agr.wa.gov</u>

Images used in this presentation may not be reused without explicit written permission from the WSDA Communications Office.